
NAG C Library Function Document

nag_check_deriv_1 (c05zcc)

1 Purpose

nag_check_deriv_1 (c05zcc) checks that a user-supplied C function for evaluating a vector of functions
and the matrix of their first derivatives produces derivative values which are consistent with the function
values calculated.

2 Specification

void nag_check_deriv_1 (Integer n, const double x[], double fvec[], double fjac[],
Integer tdfjac,

void (*f)(Integer n, const double x[], double fvec[], double fjac[], Integer
tdfjac, Integer *userflag, Nag_User *comm),

Nag_User *comm, NagError *fail)

3 Description

nag_check_deriv_1 (c05zcc) checks the derivatives calculated by user-supplied C functions, e.g. functions
of the form required for nag_zero_nonlin_eqns_deriv_1 (c05ubc). As well as the C function to be checked

f, the user must supply a point x ¼ x1; x2; . . . ; xnð ÞT at which the check will be made.

nag_check_deriv_1 (c05zcc) first calls f to evaluate both the fi xð Þ and their first derivatives, and uses
these to calculate the sum of squares

F xð Þ ¼
Xn
i¼1

fi xð Þ½ �2,

and its first derivatives

gj ¼
@F

@xj

����
x

, for j ¼ 1; 2; . . . ; n.

The components of g along two orthogonal directions (defined by unit vectors p1 and p2, say) are then

calculated; these will be gTp1 and gTp2 respectively. The same components are also estimated by finite
differences, giving quantities

vk ¼
F xþ hpkð Þ � F xð Þ

h
, k ¼ 1; 2

where h is a small positive scalar. If the relative difference between v1 and gTp1 or between v2 and gTp2
is judged too large, an error indicator is set.

4 References

None.

5 Parameters

1: n – Integer Input

On entry: the number n of variables, xj, for use with nag_zero_nonlin_eqns_deriv_1 (c05ubc).

Constraint: n > 0.

c05 – Roots of One or More Transcendental Equations c05zcc

[NP3645/7] c05zcc.1



2: x½n� – const double Input

On entry: x½j� 1�, for j ¼ 1; 2; . . . ; n must be set to the co-ordinates of a suitable point at which to
check the derivatives calculated by f. ‘Obvious’ settings, such as 0 or 1, should not be used since,
at such particular points, incorrect terms may take correct values (particularly zero), so that errors
can go undetected. For a similar reason, it is preferable that no two elements of x should have the
same value.

3: fvec½n� – double Output

On exit: unless userflag is set negative when evaluating fi at the point given in x, fvec½i� 1�
contains the value of fi at the point given by the user in x, for i ¼ 1; 2; . . . ; n.

4: fjac½n�½tdfjac� – double Output

On exit: unless userflag is set negative when evaluating the Jacobian at the point given in x,
fjac½i� 1�½j� 1� contains the value of the first derivative @fi=@xj at the point given in x, as

calculated by f, for i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ; n.

5: tdfjac – Integer Input

On entry: the second dimension of the array fjac as declared in the subroutine from which
nag_check_deriv_1 (c05zcc) is called.

Constraint: tdfjac � n.

6: f – function, supplied by the user Function

f must calculate the values of the functions at a point x or return the Jacobian at x.
nag_zero_nonlin_eqns_deriv_1 (c05ubc) gives the user the option of resetting a parameter to
terminate immediately. nag_check_deriv_1 (c05zcc) will also terminate immediately, without
finishing the checking process, if the parameter in question is reset.

Its specification is:

void f (Integer n, const double x[], double fvec[], double fjac[], Integer tdfjac,
Integer *userflag, Nag_User *comm)

1: n – Integer Input

On entry: the number of equations, n

2: x½n� – const double Input

On entry: the components of the point x at which the functions or the Jacobian must be
evaluated.

3: fvec½n� – double Output

On exit: if userflag ¼ 1 on entry, fvec must contain the function values fi xð Þ (unless
userflag is set to a negative value by f). If userflag ¼ 2 on entry, fvec must not be
changed.

4: fjac½n� tdfjac� – double Output

On exit: if userflag ¼ 2 on entry, fjac½ i� 1ð Þ � tdfjacþ j� 1� must contain the value of
@fi=@xj at the point x, for i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ; n (unless userflag is set to a

negative value by f). If userflag ¼ 1 on entry, fjac must not be changed.

5: tdfjac – Integer Input

On entry: the second dimension of the array fjac as declared in the subroutine from which
nag_check_deriv_1 (c05zcc) is called.

c05zcc NAG C Library Manual

c05zcc.2 [NP3645/7]



6: userflag – Integer * Input/Output

On entry: userflag ¼ 1 or 2.

If userflag ¼ 1, fvec is to be updated.

If userflag ¼ 2, fjac is to be updated.

On exit: in general, userflag should not be reset by f. If, however, the user wishes to
terminate execution (perhaps because some illegal point x has been reached), then userflag
should be set to a negative integer. This value will be returned through fail.errnum.

7: comm – Nag_User * Input/Output

Pointer to a structure of type Nag_User with the following member:

p – Pointer * Input/Output

On entry/on exit: the pointer comm ! p should be cast to the required type, e.g.
struct user *s = (struct user *)comm!p, to obtain the original object’s
address with appropriate type. (See the argument comm below.)

7: comm – Nag_User * Input/Output

Pointer to a structure of type Nag_User with the following member:

p – Pointer * Input/Output

On entry/on exit: the pointer p, of type Pointer, allows the user to communicate information
to and from the user-defined function f(). An object of the required type should be declared
by the user, e.g. a structure, and its address assigned to the pointer p by means of a cast to
Pointer in the calling program, e.g. comm.p = (Pointer)&s. The type pointer will be void
* with a C compiler that defines void * and char * otherwise.

8: fail – NagError * Input/Output

The NAG error parameter, see the Essential Introduction.

6 Error Indicators and Warnings

NE_INT_ARG_LE

On entry, n must not be less or equal to 0: n ¼ valueh i.

NE_2_INT_ARG_LT

On entry tdfjac ¼ valueh i while n ¼ valueh i. These parameters must satisfy tdfjac � n.

NE_ALLOC_FAIL

Memory allocation failed.

NE_DERIV_ERRORS

Large errors were found in the derivatives of the objective function.

The user should check carefully the derivation and programming of expressions for the @fi=@xj,

because it is very unlikely that f is calculating them correctly.

NE_USER_STOP

User requested termination, user flag value ¼ valueh i.

c05 – Roots of One or More Transcendental Equations c05zcc

[NP3645/7] c05zcc.3



7 Accuracy

fail is set to NE_DERIV_ERRORS if

vk � gTpk
� �2 � h� gTpk

� �2 þ 1
� �

for k ¼ 1 or 2. (See Section 3 for definitions of the quantities involved.) The scalar h is set equal to
ffiffiffi
"

p
,

where " is the machine precision.

8 Further Comments

Before using nag_check_deriv_1 (c05zcc) to check the calculation of the first derivatives, the user should
be confident that f is evaluating the functions correctly.

9 Example

This example checks the Jacobian matrix for the problem solved in the example program for
nag_zero_nonlin_eqns_deriv_1 (c05ubc).

9.1 Program Text

/* nag_check_deriv_1(c05zcc) Example Program
*
* Copyright 1998 Numerical Algorithms Group.
*
* Mark 5, 1998.
* Mark 7 revised, 2001.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagc05.h>

#ifdef __cplusplus
extern "C" {
#endif
static void f(Integer n, double xc[], double fvecc[],

double fjacc[], Integer tdj, Integer *userflag, Nag_User *comm);
#ifdef __cplusplus
}
#endif

int main(void)
{
#define NMAX 5

double fjac[NMAX][NMAX], fvec[NMAX], x[NMAX];
Integer i, j, n, tdfjac;
static NagError fail;
Nag_User comm;

fail.print = TRUE;
Vprintf("c05zcc Example Program Results\n");
n = 3;
tdfjac = NMAX;

/* Set up an arbitrary point at which to check the 1st derivatives */
x[0] = 9.2e-01;
x[1] = 1.3e-01;
x[2] = 5.4e-01;
Vprintf("The test point is ");
for (j=0; j<n; ++j)

Vprintf("%13.3e", x[j]);
Vprintf("\n\n");
c05zcc(n, x, fvec, &fjac[0][0], tdfjac, f, &comm, &fail);

c05zcc NAG C Library Manual

c05zcc.4 [NP3645/7]



if (fail.code != NE_NOERROR) return EXIT_FAILURE;
Vprintf("1st derivatives are consistent with residual values.\n\n");
Vprintf("At the test point, f() gives\n\n");
Vprintf(" Residuals 1st derivatives\n\n");
for (i=0; i<n; ++i)

{
Vprintf("%13.3e", fvec[i]);
for (j=0; j<n; ++j)

Vprintf("%13.3e", fjac[i][j]);
Vprintf("\n");

}
return EXIT_SUCCESS;

}

static void f(Integer n, double x[], double fvec[], double fjac[],
Integer tdfjac, Integer *userflag, Nag_User *comm)

{
#define FJAC(I,J) fjac[((I))*tdfjac+(J)]

Integer j, k;

if (*userflag != 2)
{

/* Calculate the function values */
for (k=0; k<n; k++)

{
fvec[k] = (3.0-x[k]*2.0) * x[k] + 1.0;
if (k>0) fvec[k] -= x[k-1];
if (k<n-1) fvec[k] -= x[k+1] * 2.0;

}
}

else
{

/* Calculate the corresponding first derivatives */
for (k=0; k<n; k++)

{
for (j=0; j<n; j++)

FJAC(k,j)=0.0;
FJAC(k,k) = 3.0 - x[k] * 4.0;
if (k>0)

FJAC(k,k-1) = -1.0;
if (k<n-1)

FJAC(k,k+1)= -2.0;
}

}
}

9.2 Program Data

9.3 Program Results

c05zcc Example Program Results
The test point is 9.200e-01 1.300e-01 5.400e-01

1st derivatives are consistent with residual values.

At the test point, f() gives

Residuals 1st derivatives

1.807e+00 -6.800e-01 -2.000e+00 0.000e+00
-6.438e-01 -1.000e+00 2.480e+00 -2.000e+00
1.907e+00 0.000e+00 -1.000e+00 8.400e-01

c05 – Roots of One or More Transcendental Equations c05zcc

[NP3645/7] c05zcc.5 (last)


	c05zcc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	n
	x
	fvec
	fjac
	tdfjac
	f
	n
	x
	fvec
	fjac
	tdfjac
	userflag
	comm
	p


	comm
	p

	fail

	6 Error Indicators and Warnings
	NE_INT_ARG_LE
	NE_2_INT_ARG_LT
	NE_ALLOC_FAIL
	NE_DERIV_ERRORS
	NE_USER_STOP

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results


	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities


